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ABSTRACT 

The programmable logic array is one of the most fascinating and fast 

developing areas of technology. Field programmable gate arrays are becoming 

prevalent in design as the density of the gate arrays goes up. In this thesis 

study, a fast encoding/decoding algorithm, Extended Golay Coding, is 

implemented in Xilinx XC4000 family programmable gate array (FPGA) 

architecture. The encoder/decoder is designed using the Xilinx XACT tool with 

the Mentor Graphics schematic capture Design Architect (DA) and Quicksimll 

simulation interfaces. With the static RAM bits onboard the new Xilinx FPGAs, 

the architecture is more powerful, and it is relatively easy to upgrade the old 

design based on the needs of the users. In this thesis, fast encoder/decoder is 

implemented with transmission word redundancy and interleaving. This is based 

on the data link layer description of the Milstd 181-144A. The FPGA static RAM 

bits are used for the encode and decode ROM of the algorithm that makes the 

coder faster. Modular approach and design hierarchy made design tasks easier 

and upgradable in this study. The timing simulations of some design modules 

will be presented. Due to the complexity of the circuits, it is found that the design 

has to be migrated to a higher density chip than XC4003 used in the simulations. 
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I.   INTRODUCTION 

The effective performance of a station, while communicating over adverse 

RF channels, relies on the combined use of error correction, interleaving and 

redundancy. These functions shall be performed within the transmit encoder and 

receive decoder. By encoding and decoding redundant bits, it is possible to 

correct bit errors without asking the source to retransmit. This provides reliable 

transmission in a noisy or heavily interferenced channel. The bit errors at the 

receiving end are recovered by forward error correcting (FEC) codes without 

requiring a second channel to ask for retransmit (like in most error correcting 

schemes using automatic repeat request - ARQ [Snelgrove,1994]). Block codes 

or convolutional codes are used where retransmission of data is impractical or 

impossible, such as in space probes or in broadcast satellites that transmit to 

multiple receivers simultaneously [Stallings, 1994]. 

In this thesis study, the implementation of the Fast Golay 

encoder/decoder is done on schematic entries. The design can be exported into 

a Programmable Logic Device. Functional, and timing simulations of the design 

will be explained in this thesis. 

The main objective of this thesis is to design a reliable encoder/decoder 

that can be used in a noisy or heavily interfered environment. The functionality 

of the algorithm is explained in Chapter II. The designs in schematics are 

explained in Chapter III. In Chapter IV, the stimulus inputs and simulation results 
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of the schematic sheets are discussed. The controller part is to be designed 

according to these simulations results in a later study. The Xilinx Logical Cell 

Array (LCA) technology is mentioned in Chapter V. The conclusion and 

recommendations are given in the Chapter VI of this thesis. 



II. ENCODING/DECODING AND EXTENDED GOLAY CODE 

This chapter explains the basics of encoding/decoding algorithms, the 

value of using the extended Golay Code, and how the algorithm works. 

The demand for efficient and reliable digital data communication has 

been increased by the emergence of large scale and high speed data networks 

in the military, governmental, and private sectors. A merging of communications 

and computer technology in this type of systems require the error correcting 

algorithms. They are essential to provide reliable transmission of data. 

[Snelgrove, 1994]. 

A typical transmission system may be represented by the block diagram in 

Figure 2.1 [Lin and Castello, 1983]. The information source can be either a 

person or a machine, e.g. digital computer. The source output can be either a 

continuous waveform or a sequence of discrete symbols. The source encoder 

transforms source output into a sequence of binary digits (bits), called the 

information sequence u in Figure 2.1. In the case of a continuous source, this 

involves analog-to-digital (A\D) conversion. The source encoder helps to 

represent a source output with minimized number of bits per unit time. Another 

requirement for source encoder is the ability to reconstruct signal from 

information sequence u without ambiguity. 

The channel encoder transforms the message sequence u into a discrete 

encoded sequence x in Figure 2.1, called a code word. The modulator changes 
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Figure 2.1. Block Diagram of a Typical Data Transmission or Storage System. 

each output symbol of the channel encoder into a waveform of duration T 

seconds suitable for transmission. This waveform enters the channel and is 

corrupted by noise. The demodulator processes each received waveform of 

duration T and produces an output sequence y. The channel decoder transforms 

the received sequence y (shown below in Figure 2.1) corresponding to the 

encoded sequence x, into a binary sequence u. The source decoder then 

transforms the estimated sequence u into an estimate of the source output and 

delivers the estimate to the destination [Lin/Cas., 1983]. 

A. FEC IN MILSTD 188 -141A 

Milstd 188-141A is a high frequency (HF) military communication 

standard. The Forward Error Correcting (FEC) in this standard is the subject of 



study in this thesis given in this chapter. This standard consists of Automatic 

Link Establishment (ALE) and FEC sublayers in the Data Link Layer of the seven 

layer OSI model shown in Figure 2.2. This thesis involves only the Golay Code, 

interleave, and redundancy of the standard. 
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Figure 2.2. Milstd 188-141A FEC in OSI Model. 

B.       THE GOLAY CODE 

The Golay code is a binary linear block (23, 12) code with minimum 

Hamming distance = 7 [Lin and Castello, 63 and Proakis, 1989, 446]. The (23, 

12) Golay code is the only known multiple-error-correcting binary code which is 

capable of correcting any combination of three or less random errors in a block 

of 23 digits [Lin,Castello, 1983]. The extended Golay code is obtained by adding 



an overall parity bit to the (23, 12) code which results in a binary linear block 

(24, 12) code with minimum Hamming distance = 8. 

The (23 ,12 ) Golay code is generated either by 

g1(x)=1+x2+x4+x5 + x6+x10+x11 (2.1) 

or by 

g2(x) = 1+x+x5+x6 + x7+x9+x11 (2.2) 

Both gi(x) and g2(x) are factors of x23 + 1 and x23 +1 = (1+ x )*gi(x)*g2(x) 

[Lin and Castello, 135]. The (24, 12, 3) Golay FEC (Forward Error Correcting) 

code used in this study is derived from Equation 2.2 by adding an even parity bit 

for each row's 23 elements to the end of the row in the generator matrix, G, 

derived from g2(x). The generator matrix, G, contains an identity matrix, l12, and a 

parity matrix, P, as shown in Figure 2.3. 

100 000 000 000 

010 000 000 000 

001 000 000 000 

000 100 000 000 

000 010 000 000 

000 001 000 000 

000 000 100 000 

000 000 010 000 

000 000 001 000 

000 000 000 100 

000 000 000 010 

000 000 000 001 

101 011 100 011 

111 1 10 010 010 

110 100 101 011 

110 001 110 110 

110 011 011 001 

011 001 101 101 

001 100 110 111 

101 101 111 000 

010 110 111 100 

001 011 011 110 

101 110 001 101 

010 111 000 111 

Figure 2.3. Generator Matrix for (24, 12) Extended Golay Code. 
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Encoding shail use the fundamental formula: 

x = u * G (2.3) 

where the code word x (1x24 matrix) shall be derived from the message word u 

(1x12 matrix) and the (12x24) generator matrix G, and " * " is matrix 

multiplication using modulo 2 addition. As seen in Figure 2.4, encoding is 

performed by using the encoder circuitry to output Golay check bits d ....G12 

and data word bits in a sequence. This will be repeated three times to add word 

redundancy at the physical level of the communication link to increase reliability 

of the received word after a majority voting. 

12 INPUTS DATA BITS 
W, W.W,...W„W,. 

ENCODE ROM ADDRESS 

12 GOLAY CHECK BITS 
"G" 

GOLAY ENCODE ROM 

4KX12BITS 

w,w2 w12 

ENCODE ROM 
DATA OUT Gi -Gi2 

Wi    W2   W3    W„   W12 G,    G2     G3    G,,     G1: 

24 OUTPUT FEC BITS 
TRANSMITTED 

Figure 2.4. Golay FEC Encoding Example. 

Decoding will implement the following equation: 

s = y_ * HT 

where HT : 24x12 matrix 

y : 1x24 matrix 

(2.4) 
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s : 1x12 matrix, 

and HT is the transpose of a parity check matrix H as shown in Figure 2.5, PT is 

the transpose of the same submatrix P in generator matrix G. 

P
T 

111 110 010 010 

011 111001001 

110 001 110 110 

0 11 000 111 011 

110 010 001 111 

100 111 010 101 

101 101 111 000 

010 110 111 100 

001 011 011  110 

000 101 101111 

111 100 100 101 

101 011 100 011 

12 

100 000 000 000 

010 000 000 000 

001 000 000 000 

000 100 000 000 

000 010 000 000 

000 001 000 000 

000 000 100 000 

000 000 010 000 

000 000 001 000 

000 000 000 100 

000 000 000 010 

000 000 000 001 

Figure 2.5. Parity Check Matrix for (24, 12) Extended Golay Code. 

y_= x + e is the received vector which is the modulo-2 sum of the code 

word x and an error vector e in the channel s in Equation 2.4 is a vector of "n-k" 

bits called the syndrome. Each correctable error vector e results in a unique 

vector s. The syndrome vector s can be computed according to the Equation 2.4, 



and used to index a look-up table of the corresponding error vector e, which is 

then added modulo-2 to y_ to yield the original code word x as shown in Figure 

2.6. 

24 INPUT FEC BITS RECEIVED (WITH ERRORS) 

RECEIVED W, W,2 

(PLUS ERRORS) 

RECEIVED G,...Q2 

(PLUS ERRORS) 

W,    W2   W3    W„   W12 6,6,     63    G„     G1: 

SAME GOLAY 
ENCODE ROM 

SAME 
4K X 12 BITS 

6 62 
(PLUS ERRORS) 

12 BIT / 
"EXCLUSIVE OR" 

60LAY DECODE ROM 
! 

]~]    \ 4K X 12 BITS 

DATA BITS ERROR 
^      PATTERN TO CORRECT 

"s" SYNDROME   BITS   USED AS 
ADDRESS POINTER BASED ON 

"6" ERROR PATTERN 

wlw2w3....w11w12 
CORRECTED DATA BITS "W" 

Figure 2.6. Golay FEC Decoding Example. 

Flags are set according to the number of errors being corrected. If s is not 

equal to zero and e contains more ones than three bit errors, a detected error is 

indicated and appropriate flag is set. 



C.       INTERLEAVING AND DEINTERLEAVING 

The Milstd 188-141A basic word has 24 bits, and it requires two Golay 

encoder section A and section B to do the work. The basic word bits Win! (MSB) 

through Win24 (LSB) and resultant Golay FEC bits G, through G24 (with G13 

through G24 inverted) shall be interleaved following the pattern in Figure 2.7 

before transmission. 

CODER A 

GOLAY CHECK 
BITS INVERTED 
FROM NORMAL 

AFTER 
ENCODING 

LAST BITS' 
49TH STIFF RIT: G„ 

GE 

G* 
G* 
G„ 
G„ 
G„ 
G,» 
G» 
G„ 
G„ 
Go 
W WR24 
W= WR23 
Wa WR22 
W„ WR21 
W WR20 
W» WR19 
W„ WR18 
W„ WR17 
W„ WR16 
W„ WR15 
Wu WR14 
W» WR13 

CHECK BITS 
REINVERTED 
TO NORMAL 

BEFORE 
DECODING 

DECODER B 

WR24 
\NSWR23 
^OO1 WR22 
\sX WR21 

\\>WR20 
AV> WR19 
\NXWR18 

\DECODER A 

GOUY ENCODING 
TERLEAV1NG WORDS 

(49 BITS) 

GK - 
G„ - 
GTO 

I: : 
G. 
G. 
Gs - 
G. - 
G, ■ 
G, - 
G, 
W„ WR12 
W„ WR11 
W,„ WR10 
W, WR9 
W, WR8 
W, WR7 
W„ WR6 
W, WR5 
W, WR4 
W, WR3 
W, WR2 
W, WR1 

DEINTERLEAXflNG 

WR12 
WR11 
WR10 
WR9 
WR8 
WR7 
WR6 
WR5 
WR4 
WR3 
WR2 
WR1 

/OUTPUT 
BASIC 
WORD 

(24 BITS) 

GOLAY DECODING 

Figure 2.7. Word Bit Coding/Decoding, Interleaving/Deinterleaving. 
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There are forty eight interleaved bits, and the 49th bit is a stuff bit 

(value=0) during transmission. They shall constitute a transmitted word and be 

transmitted A1, B1, A2, B2, ..., A24, B24, S49 using a 16-1/3 symbols (tones) 

per word time (Tw). In order to lessen the effects of the channel noise causing 

information data bits loss all from one word, interleaving in this manner is 

employed. At the receiver, after 2/3 majority voting in Figure 2.8, the 48 received 

bits of the majority word (including the remaining errors) shall be deinterleaved 

as shown in Figure 2.6. The Golay FEC decoder will then produce a correct (ed) 

24 bit basic word (or an uncorrectable error flag). The 49th stuff bit (S49 ) is 

ignored. 

L RFDIINDANT "WORD M1    J. REDUNDANT "WORD M+V        J 

WORD 
(BIT) FLO 

BIT ORIENTED 2/3 
MAJORITY VOTE 

DECODER 

^L 

T 
NOTE : THE USE OF 2/3 VOTING REQUIRES EACH 

MAJORITY WORD M TO BE TRANSMITTED 
AT LEAST THREE ADJACENT TIMES 

WORD ORIENTED 
DEINTERLEAVING AND DECODING 

Figure 2.8. Bit and Word Majority Voting Before Decoding. 
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D.       REDUNDANT WORDS 

Each of the transmitted 49-bit (or 16-1/3 symbol) word in the Tw time shall 

be redundant (times 3) to reduce the effects of fading, interference and noise. At 

bit time interval (approximately Tw/49), the receiver shall examine the present bit 

and the past bit stream and perform a 2/3 majority vote, on a bit-by-bit basis, 

over a span of three words. The resultant 48 most recent majority bits (excluding 

the 49th bit which is the stuff bit) constitute the latest majority word and shall be 

delivered to the deinterleaver and FEC decoder (Figure 2.8). In addition, the 

number of unanimous votes of the 48 possible votes associated with the majority 

word can be temporarily retained for use. 

In this thesis the main focus is on the design and simulation of various 

modules that will accomplished the operation discussed in this chapter. 

12 



III. DESIGNING A FAST GOLAY ENCODER / DECODER 

In this chapter, the implementation of the fast Golay decoder/encoder is 

explained. The implementation overview, and details are given to help the 

design of a controller in a future study. 

A.     MODULAR DESIGN APPROACH 

The modular approach allows a designer to create small pieces of the 

whole design and debug them relatively easier than the bigger complex 

designs. Making designs in short time period is important in today's fast 

developing area of technology. It is advantageous to put the pieces together 

creating the whole design as layers of encapsulation and modules. This 

approach develops a hierarchy of layers from the topmost one showing the 

simple inputs and outputs of the whole system to the lowest one showing the 

gate level construction of each component. As we go down to lower layers, we 

get into those encapsulated design modules and involve more the hardware 

details of each module. In this way, the design is partitioned into layers of 

hierarchy and modules independent from each other. This allows them to be 

individually simulated and debugged. 

13 



B.       GENERAL OVERVIEW OF THE DESIGN 

1.       Top Level Layer 

a.       Introduction 

The top layer consists of the input signal: serial data input, 

encoder/decoder select, system clock, and clear signals and encode/decode 

ROM matrices. The output signals are encoded word transmission or decoded- 

and-recovered data word serial output. There are status signals representing the 

valid times of the signal transmission beginning and ending. 

The functional overview of the design is shown in Figure 3.1. The 

encode, and decode ROM matrices in the algorithm are entered into the static 

RAM cells of the FPGA initially. The encode control signals and decode control 

signals are generated alongside serial input according to the encoder/decoder 

select input of the controller unit in Figure 3.1. 

SERIAL DATA      
INPUT 

ENCODE/DECODE 
ROM INPUT O 

CONTROL 
SIGNALS 

ENCODER/DECODER 
SELECT        

^ 

MAIN_ 

CIRCUIT ENCODER/DECODER 
SERIAL OUTPUT 

CONTROLLER 
> 

ENCODER/DECODER 
BEGIN & END SIGNALS 

Figure 3.1. Functional Diagram of the Golay Encoder/Decoder. 
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The controller in Figure 3.1 will generate the status signals showing the 

beginning, and end of encode and decode word transmissions. The design 

schematic (MAIN_CIRCUIT) will generate the serial encoder/decoder output 

according to control signals, and serial bits coming in. The work presented in 

this thesis is focused on the MAIN_CIRCUIT. The design of CONTROLLER is 

not included. 

The block diagram of the MAIN_CIRCUIT of the encoder/decoder 

is shown in Figure 3.2. This represents the interfaces among modules which 

perform the two functions shown in Figure 2.4 and Figure 2.6. 

T0_MMW0R0B.X0R(1:12) 

DEC0DE_RAMJN[11: 

SYICKJS(13:24) 

ENCODE RAW INTO:111 

SERIAL« > 

H 

SYSTEM CLK 
NEWTEST_YEN ! j DEC0DE_STAGE_LAST2 

J1- 
MAJORITY BUSES(3x49) 

IBUSABUSB.BUS.q 

->TfWBMT.ENCODE_OUT 

A n 
XOR2SNEW2 

VOTED WORD|13:24) 

/ 
DECODEDJ\0®pUT(13:24) 

DED0DED_W0RD_0Ur(1:12) 

24Brr PAR TO SER 

TO MAJW0R0A(1:12) " /  

H* TTWEMTT-DECODE OUT 

RAM BITS NEW! 

H 
SYHLBUSttttK 

V0TED_W0RD(1:12) 

Figure 3.2 Block Diagram of the Golay Encoder/Decoder. 
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NEWTEST_YEN, the first module on the left of the Figure 3.2, has 

two functions. The first one is that the entire encoding cycle is finished in this 

module. The second one is that it has the three 49-bit registers that are used 

both for encoding, and decoding cycles as explained in details later in this 

chapter. The encode ROM matrix in this module is looked up by serial input 

message bits. The Golay check bits are generated according to the algorithm 

shown in Figure 2.4. 

DECODE_STAGE_LAST2 is the second module on the left in 

Figure 3.2. One of its two basic functions is to take the three buses with received 

redundant message words from the first module NEWTEST_YEN to make a 2/3 

majority voting explained in Chapter II. Its other function is to generate syndrome 

bits shown in Figure 2.6, and pass it to the RAM_BITS_NEW1 modules shown in 

Figure A.1. Meanwhile this module is to keep the two voted message words until 

they are XORed with error correcting data bits to give the corrected data word as 

shown in Figure 2.6. 

There are two RAM_BITS_NEW1 modules. One is at the top, and 

the other is at the bottom. RAM_B!TS_NEW1 module has the parity check matrix 

or decode ROM. This module takes the syndrome bits, and generates the "data 

bits error pattern to correct" as shown in Figure 2.6. 

As shown in Figure 3.2, two identical stages are dealing with the 

two halves of the 12 bit portions in the same manner. XOR2S_NEW2 module 

takes both the received message word and "data bits error pattern bits" 

16 



TO_MAJWORDA_XOR or TO_MAJWORDB_XOR. It also corrects the received 

message word VOTED_WORD by XORing both inputs. 

The  24BIT_PAR_TO_SER  module  multiplexes  both  corrected 

message words, and puts them on a serial output line. 

b.       Getting Into MGC Designs 

The top level module Figure A.1 shows the detailed inputs, and 

outputs in the system. The controller generates the control signals needed for 

the modules. These signals will be asserted according to the programmed 

stimulus in Quicksimll during simulations. 

The lower layer of MAIN_CIRCUIT in the hierarchy shows the 

modules and the interfaces among them as shown in Figure A.2. Detailed 

descriptions of each module will be given in this chapter. 

2.       Descriptions of the Design Modules 

a.        NEWTEST_YEN 

This module has two basic functions. If the cycle is an encoding 

cycle, it uses serial input bits to look up the Generator matrix (G) to generate 

Golay check bits. The upper golay check bits are inverted before interleaving. 

The two Golay words and two message words are interleaved as shown in 

Figure A.3. This provides reliable transmission and receive of messages without 

being much affected by environmental noise and electromagnetic interference. 

(1)      ENCODE_IN_WMAT. This is the third module from 

the top at the left. This module's basic function is using serial input bits to look 
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up generator matrix for check bits. The encode and decode ROMs' values are 

entered into static RAM bits (ram 16x8 and ram 16x4 library parts) as shown in 

Figure A.4. A 4-bit counter is used to begin counting when reset. The count will 

be ANDed with the serial input. This will be used to look up Generator Matrix as 

the row select. Shift enable signal from controller will be asserted for twelve 

clocks. This lasts until all the message word bits to be ANDed with the count are 

shifted. The serial input bits will be multiplexed into the two encoders while they 

are also shifted into two 12 bit shift registers(12BIT_SHIFTREG1s on the left of 

Figure A.3) to keep the message words to be interleaved later. The contents of 

the shift registers and two Golay check words will be interleaved into the module 

REGFIRST_WEN1, the third module from right as shown in Figure A.3. The 

encode ROM look-up will be performed by the "count value" corresponding to 

ones in the message word bit sequence. The corresponding row in encode ROM 

will be XORed with the next one that is looked up. For example, if the eighth 

element of the message word is one, it will pass the count value eight, and it will 

look up the eighth row in the generator matrix. This row will be XORed with the 

present XOR module inputs. If the serial message input bit is "1", it passes the 

counter's count, or if it is "0", it passes "0" to look up the generator matrix. The 

passed count zero value will look up the first row of the matrix which consists of 

all zero values in its 12 bit positions and send twelve zero values into the 

XORing module (RAM_XOR_TO_LAST1) shown in Figure A.4. The zero bit 

values in the message word will not affect the result. 
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The 12FDC_WES and the 5FDC_WES are the same 

schematics except that in 12FDC_WES, there are 12 D flip-flops instead of 5 in 

5FDCJ/VES. They are used as parallel shifter of the incoming bits with an 

enable signal as shown in Figure A.4 and Figure A.7. These two help pipeline 

the stages, and eliminate the possible invalid output transition into the XORing 

module (RAM_XOR_TO_LAST1). 

The RAM_XOR_TO_LAST1 module gets the rows looked up 

in the encode ROM, and uses the serial message bits as enable to take the 

looked up row into the XORing module as shown in Figure A.6. The ANDing of 

serial input and inverted WE (write enable signal to write the encode or decode 

ROM into the static memory cells) provides this enable signal. 

(2). 12BIT_SHIFTREG1. The 12BIT_SHIFTREG1 module 

shown in Figure A.5 is used to buffer the input message word bits and keep 

them as they go into the ENCODE_IN_WMAT module simultaneously. When the 

message bits are all taken into ENCODE_IN_WMAT module, this module will 

have all the twelve bits of the message word to be interleaved later. 

(3). REGFIRST_WEN1. The two module outputs 

mentioned above are interleaved and shifted into the 49 bit register by asserting 

the enable signal FROM_ENCS from the controller in the encoding cycle as 

shown in Figure A.3, and Figure A.8. After these bits are interleaved and shifted 

into this module, the TR_ENC_OUT (transmit encoded word serial out signal 
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from the controller) is asserted high for 3x49 clock cycles to transmit the 

interleaved 49 bits. 

In the decoding cycle, SERCONT_SIG_0 and 

SERCONT_SIG_1 (control signals for multiplexing serial input both in the 

decode and the encode cycles) are both asserted high by the controller, and the 

serial input is passed into REGFIRST_WEN1's 49th bit. The serial input bits to 

be decoded are shifted into this module, and later into the next two modules (49 

bit REG_NEWSECOND1 register modules) in a sequential order. The 3x49 bits 

are taken into three modules to be loaded on three buses for the majority vote. 

In the encoding cycle, the interleaved 49 bits are transmitted 

to physical medium by asserting TR_EN1 signal high as they are shifted down 

the first 49-bit register module (REGFIRST_WEN1, the third module from the 

right in Figure A3). TR_EN2 control signal is asserted high to transmit the bits 

coming from the REGFIRST_WEN1 module into module REG_NEWSECOND1 

(the second one from the right in Figure A.3). Finally TR_EN3 is asserted high to 

transmit the bits coming from the first REG_NEWSECOND1 module (the second 

module from the right in Figure A.3) into the second module 

REG_NEWSECOND1 (the first one from the right in Figure A3). 

(4). REG_NEWSECOND1. This module is used in two 

adjacent places at right as shown in Figure A.3. This module is also used in both 

the decoding and the encoding cycles as mentioned early in this chapter. 
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In the encoding cycle, after the interleaving, the module 

REGFIRST_WEN1's content is shifted into the first, and then into the second 

REG_NEWSECOND1 modules as shown in Figure A.3. While the bits are 

shifted into the next bit position, they are transmitted by the output signal 

"TR_SER_ENCOUT" as shown in Figure A.3. 

In the decoding cycle, the control signals 

SERCONT_SIG_0, and SERCONT_SIG_1 from controller will be asserted to 

multiplex the serial input into the REGFIRST_WEN1 module. And they are 

shifted into the second and the third modules (two REGNEW_SECOND1 

modules as shown in Figure A.3) until all the 3x49 bits are taken into three of the 

register sets. 

A majority vote done MAJ_VOTE_DONE control signal will 

be asserted to clear the registers after the majority vote of three buses as shown 

in Figure A.3. The encoded word is transmitted to the output signal 

TR_SER_ENCOUT in Figure A.3. 

b.        DECODE_STAGE_LAST2 

The DECODE_STAGE_LAST2 module shown in Figure A. 10 

performs the majority vote of the three incoming 49-bit buses from the registers 

explained in NEWTEST_YEN module. When all the buses are ready, the 

majority vote enable signal, MAJ_VOTE_EN from controller, is asserted high to 

make 2/3 majority vote of the bus values. After the vote, the voted 49bits are 

deinterleaved as shown in Figure A. 10. The 2x12 bit message words and 2x12 
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bit Golay check words are obtained after the deinterleaving. The upper Golay 

check bits shown in Figure A. 10 are reinverted before being taken into the 

upper XOR2S_NEW1 module at the right shown in the same figure. The control 

signal SHIFTAFMAJ_EN is asserted high after the vote. It shifts deinterleaved 

values into the golay (GOLAY_MAJ_WORD_A, and GOLAY_MAJ_WORD_B) 

and voted message word (GOLAY_MAJWORD_A, and GOLAY_MAJWORD_B) 

modules shown in the Figure A. 10. SHIFT_INTO_ENCS (shift voted message 

words into the encoders control signal) shifts "the received message word with 

errors" into ENCODE_IN_WMAT module to look up the encode ROM. This 

yields the check bits to compare with the received Golay check bits to find out if 

any received message bit is in error. The ENCODING_DONE signal will be 

asserted high when all the received message word is shifted, and XORed with 

the received Golay bits. The REGCLR_ASYND_XOR (register clear) signal will 

be asserted high after the voted message word's XORing with syndrome bits as 

shown in Figure A.2. 

(1). VOTER6. This module performs a majority vote after 

having all three incoming 49-bit buses (three redundant received 49 bits to be 

decoded) are ready. A majority vote enable signal from controller is asserted 

high when all buses are ready (the MAJ_VOTE_EN signal in Figure A.11). The 

majority vote algorithm is 2/3 voting. If the two or three bits are low (or zeros), 

then the vote is zero, if two or three bits are high (or ones), then the vote is one. 
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Suppose the incoming three bit signal names are A, B, and C, then the vote is 

implemented by MAJ_ VOTE = (AxB)x(AxC)x(BxC) as shown in Figure A.11. 

(2). GOLAY_MAJ_WORD_A and GOLAY_MAJ_WORD_B. 

These components have the values of the received check bits after majority vote 

and deinterleaving as shown in Figure A. 10. The difference between these two 

modules is that the one above (GOLAY_MAJ_WORD_B) has all the incoming 

bits inverted as explained in Chapter II (Figure 2.7). The input/output bits are 

named according to Figure 2.7. 

The deinterleaved bits coming into these modules are 

shifted by SHIFTAFMAJ_EN signal by asserting MAJ_VOTE_EN input pad of 

the each module shown in Figures A. 10 and A. 12. The bit values of each 

received message word will be kept by asserting MAJ_VOTE_EN low to allow 

the Q outputs of the D flip-flops circulate to keep the value they have until they 

are cleared as shown in Figure A. 12. 

(3). MAJ_WORD_A_TO_ENC and MAJ_WORD_B_TO_ENC. 

The function of these modules is to shift the voted message word to look up the 

encode ROM to find the check bits. These check bits are XORed with the 

received Golay check bits to give the syndrome bits shown in the Figure A. 10. 

The interleaved bits coming into modules MAJ_WORD_B_TO_ENC, and 

MAJ_WORD_A_TO_ENC are shifted serially into higher and lower encoder 

modules (ENCODE_IN_WMAT modules shown as two modules one on top of 

the other at the second column from the right in Figure A.10). SHIFTIN_ENCA 
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and SHIFTIN_ENCB input signals are asserted h? for 12 clock period for each 

module to shift all twelve-bit voted message woro nto encoders. After all the 

message bits are shifted, the SHIFTMEN control signal shown in Figure A.10 will 

be asserted low to end the shift. As long as the SHIFTMEN signal is high, it won't 

let the message bits (taken once into these modules) get into shifted sequence 

as shown in Figure A. 13. This is taken care of by "and2b1" (two input AND gate 

with one input inverted) gates by having the SHIFT_EN signal coming into their 

inverted inputs. The modules are cleared by the ENCS_DONE (encode 

operation is done) signal. 

(4). REG_FORMAJ_WORD. The REG_FORMAJ_WORD 

module keeps the received message word until the syndrome bits look up the 

decode ROM to give the "data bits error pattern to correct" shown in Figure2.6. 

After this error correcting pattern is obtained, it is used to correct the received 

message word as explained later in this chapter. This module is the same as the 

GOI_AY_MAJWORD_A module except the naming of the input and output 

signals. 

(5). XOR2S_NEW3. This module performs modulo two 

addition of each row of the encode ROM looked up by the received message 

word bits. This is done by XORing the columns of each looked up row in encode 

ROM as they come into XOR gates shown in Figure A.15. The 

GEN_SYNDROME control signal will shift the final value of the XORs' outputs 
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into the D flip-flops to give the "syndrome bits" that are explained later in this 

chapter. 

c.        RAM_BITS_NEW1 

This module looks similar to ENCODE_IN_WMAT module. The 

difference is that, in this module there is an additional sub module at the left 

(SYND_LAST_CIR). The RAM bits in this module are programmed to keep 

"decode ROM" values shown in Table 4.6 instead of "encode ROM" shown in 

Table 4.1. This module takes the syndrome bits generated by the module 

DECODE_STAGE_l_AST2 shown in Figure A. 16. By using the syndrome bits to 

look up the decode ROM "Data Bits Error Pattern to Correct" in Figure 2.6 is 

obtained. The SYND_LAST_CIR in Figure A.17 is the same module as the 

MAJ_WORD_B_TO_ENC in Figure A. 13, except the naming of the input and 

output signals. Rest of the modules are explained early in this chapter. 

In this chapter all modules implementing the MAIN_CIRCUIT were 

constructed. Because the functionality of this modules are well defined, 

simulation  of these  modules  will   be  explained  in  the  following  chapter. 
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IV.    SIMULATION RESULTS 

In this chapter, first mentor graphics schematic capture tool Design 

Architect and logic simulation tool Quicksimll are discussed. Simulation inputs 

and outputs after running the Quicksimll simulations for several modules are 

given as examples in discussion. 

A.       MGC DESIGN ARCHITECT 

Mentor Graphics tools are used to assist the electronic design Process 

used in this thesis. Mentor Graphics tools can provide schematic entry, design 

analysis in IC/PCB layout, test and manufacturing, electronic packaging, and 

document preparation [Mentor Graphics Idea Station, 1989]. 

A schematic entry tool consists of three main parts. The first part, 

component libraries, provides files of component and their simulation models 

used in schematic designs and simulations. NETED (Net Editor-Schematic 

Capture) creates schematic sheets of components. And SYMED (Symbol Editor) 

creates component symbols using pins, borders and design properties. 

Schematic sheets are created by placing components, drawing nets, and adding 

textual information. It has a variety of different library packages with many library 

parts to facilitate the design. The routing capability, the gate count, and the 

delay time in digital simulations provide great insight and analysis capability to 

the designers. 
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In this thesis, Xilinx XC4000 library parts associated with Mentor Graphics 

Design Architect are used to create the design sheets in schematic entries. 

Besides the basic components, some medium scale integrated circuit 

components such as counters and RAM bits (16x8 and 16x4 RAM cell- 

components) provided by Xilinx 4000 family library are also used to build 

modules. Specifications are explained in Xilinx, Prog. Logic Data Book,1996. 

B.       SIMULATIONS OF THE DESIGN MODULES 

Using the Quicksimll simulations to test and debug the design sheets is 

straight forward. Quicksimll gives the user the opportunity to go down the design 

layers to trace and list the individual signal in details. This helps to find out how 

the signal transitions occur in details in most of the debugging cases. The other 

benefit of this tool is that it gives the user the capability to save the force values 

simulation stimulus and the ability to be upgraded later along with the setup and 

waveform save options. 

1.  NEWTEST_YEN Simulation 

The module NEWTEST_YEN shown in Figure A.2 is the first module in the 

design to be simulated. The functionality and interfaces of this module are 

explained in Chapter III. Both the encoding circuit and the registers to keep the 

serial input for majority vote in the decode cycle are implemented in this module. 

This module performs the Golay FEC encoding shown in Figure 2.4 using the 

Equation 2.3. The Generator matrix G shown in Figure 2.3 is stored into the static 

RAM bits by input signals ENCODE_RAM_IN (11:0), WE, A3, A2, A1, A0. The 

28 



serial   inputs   are   multiplexed   by   control   signals   SERCONT_SIG_0   and 

SERCONT_SIG_1 into the encoders or into the 49 bit register sets depending on 

whether it is an encode or decode cycle. The first row of the matrix is all zeros. If 

the serial input is zero, it is going to encode the first row. There is no effect of 

serial  input zero bit value on the modulo-2 addition. There is a  need  in 

implementing the Equation 2.4 to give the code word x (1x24 matrix). In this 

equation, the two message words u (two 1x12 bits serial inputs into encoders 

shown in Figure A.3) look up the rows of both the encode ROM matrices. Each 

high bit in the message word encodes a corresponding row in the encode ROM. 

Then these looked up rows are modulo-2 added (or XORed) to yield the two Golay 

words. They are interleaved with the two message words before being transmitted. 

The second row of the ENCODE_RAM_IN (input matrix HEX values for encode 

ROM) shown in Table 4.1   consists of zeros since using the static RAM module 

introduces additional module delay. The twelve rows of the encode ROM matrix 

given in Table 4.1 are then entered. The hex values entered into the encode ROM 

is based on taking the right most bit of each row of the P matrix in G shown in 

Figure 2.3 as the first bit of hex values given as ENCODE_RAM_IN inputs in the 

simulations. The P matrix is entered without I matrix, because the 12 bits in the 

code word will exactly be the same as the message word. A 12 bit shift register 

(12BIT_SHIFTREG1 in Figure A.3) will keep the serial input message bits. The 

sixteen rows of the encode matrix are entered by using four address bits (AO, A1, 

A2, A3). Twelve rows are needed to be addressed in the encode ROM matrices. 
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Zero bit values are entered into the first and the last two rows of the encode ROM 

matrix. It is strongly advised to assert a 7/globalsetreset" signal for a fraction of a 

clock period before doing the simulations on the XC4000 family FPGAs. This 

helps clear the chip modules to eliminate unknown (resistive or high Z) states. The 

input values of the simulation are summarized in the Table 4.1 as specified above. 

CLOCK_PERIOD 

(nsec.) 

ENCODE_ROMJN(11:0) 

(HEX.) 

A3 

(MSB) 

A2 A1 A0 

(LSB) 

200 000 0 0 0 0 

400 000 0 0 0 1 

600 C75 0 0 1 0 

800 49F 0 0 1 1 

1000 D4B 0 1 0 0 

1200 6E3 0 1 0 1 

1400 9B3 0 1 1 0 

1600 B66 0 1 1 1 

1800 ECC 0 0 0 

2000 1ED 0 0 

2200 3DA 0 1 0 

2400 7B4 0 1 1 

2600 B1D 1 0 0 

2800 E3A 1 0 1 

3000 000 1 1 0 

3200 000 1 1 1 

Table 4.1. Input value s of the er »code RON H. 
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For the write period of the encode ROM (200-3400 ns), WE signal is held 

high. The control signals SERCONT_SIG_0, and SERCONT_SIG_1, clear 

signals, transmit enable signals, and shift enable signals shown in Figure A.3. 

They are given in Table 4.2 when they are at their high states. 

CONTROL SIGNAL HIGH CLOCK PERIOD (nsec.) 

SERCONT_SIG_0 4000-6400 

SERCONT_SIG_1 6400-8800 

CLR_FINXOR_A 100-3800 

CLR_FINXOR_B 100-6200 

CLR_SERIN 100-150 

TR_ENC_OUT 9400-39200 

FROM_ENCS 9400-39200 

MAJ_VOTE_DONE 100-200 

TR_EN1 9800-19600 

TR_EN2 19600-29400 

TR_EN3 29400-39200 

Table 4.2. Values of the control signals at their high clock periods. 

The simulation of NEWTEST_YEN module is focused on checking the 

encoding functionality. The simulation results presented in Figures B.1, B.2 and 

B.3 are for checking the NEWTEST_YEN module's encoding function. 

The encode ROM input signal values are traced between times 200ns 

and 3400ns as shown in Figure B.1. The WE (write enable) signal is held high 

as the address bits (A0, A1, A2, A3) are changed to let the encode ROM bits be 

written. 
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The values entered into the encode ROM and the first 49bit register bus 

(REGFIRST_WEN1) transitions' traces are shown in Figure B.2. After the 

message and the Golay check bits from the two code word bits are interleaved, 

they are taken into the BUS_A at time 9400ns. This 49 bit sequence is shifted 

one bit position at each clock cycle into the next REG_NEWSECOND1 module. 

The interleaved bit sequence is transmitted by TR_SER_ENCOUT output signal 

shown in Figure B.2. When the FROM_ENCS signal is high, the encoder A and 

B (ENCODE_IN_WMATs), shift register A and B (12BIT_SHIFTREG1s) values 

are taken into the BUS_A as shown in Figure B.2. 

There are three transmission sequence control signals TR_EN1, 

TR_EN2, and TR_EN3 as shown in Figure B.3. TR_EN3 signal's being high 

means that the values in the right REG_NEWSECOND1 module shown in Figure 

A.3 are transmitted by the TR_SER_ENCOUT signal. TR_EN1 and TR_EN2 

signals being low means that the transmission of the bit sequence in 

REGFIRST_WEN1 and first REG_NEWSECOND1 modules are completed. The 

BUS_C shows how the bits are shifted at each clock cycle. 

SERIALJN bit values given in Table 4.3 are being asserted from time 

4000ns on to the serial input of the lower ENCODE_IN_WMAT. SERIALJN bits 

are then multiplexed into the serial input of the upper ENCODE_IN_WMAT 

modules shown in Figure A.3 at time 6400ns and on. 
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CLOCK @ A (nsec.) SERIALJN (Bit Value) CLOCK @ B (nsec.) 

4000 1 6400 

4200 1 6800 

4400 0 7000 

4600 0 7200 

4800 1 7400 

5000 0 7600 

5200 0 7800 

5400 1 8000 

5600 1 8200 

5800 0 8400 

6000 1 8600 

6200 1 8800 

Table 4.3. Serial Input Values Asserted to Encoder A and B. 

The TR_SER_ENCOUT sends the last bit of the code word at time 

38800ns since it gets into the 49 bit registers (first into REGFIRST_WEN1) at 

time 9400ns. As a result the total transmission lasts until 9400+3x49x200 = 

38800ns (three times 49 bit shift each at one clock cycle). The NEWTEST_YEN 

modules behave as expected 

2.       DECODE_STAGE_LAST2 Simulation 

In this simulation, the functionality of the majority voter (shown in Figure 

A.11), deinterleaving and generation of the syndrome bits in the 

DECODE_STAGE_LAST2 module shown in Figures A.2 and A.11 are checked. 
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This module represents the upper portion of the Figure 2.6. The received 

sequence consists of two twenty four bits code word. Each consists of a 

message and a check word. The purpose of this simulation is to make sure the 

majority voting and interleaving are performed correctly. The check bits 

generated from the received message word can help to find out if received 

message word has bit errors. If any of the syndrome bits is one, then the 

message word is in error. Message word is corrected in a way shown in Figure 

2.6. The syndrome bits are used to look up the decode ROM to yield the data 

bits error corrected pattern values. This pattern bits are XORed with the received 

message word. This will correct the received message word. The encode ROM 

and decode ROM values are entered in the same way as it is shown in Table 

4.1. The row values of the matrices are the only differences in the encode and 

the decode ROMs. The stimulus values of DECODE_STAGE_LAST2 module 

are given in Table 4.4, where the encode ROM is the same as the one in 

NEWTEST_YEN simulation. 

Three 49 bit input values are asserted on each bus. They are 2/3 majority 

voted in a way shown in Figure 2.8. After majority vote, the voted code word bits 

are interleaved as shown in Figure 2.7. The decode procedure's first part 

consists of generating syndrome bits as explained above. The three bus values 

here are picked up in a random manner. Majority clear (MAJ_CLR in Figure 

A.11) is asserted high before the vote to clear the voter circuit. Majority vote 

enable signal is asserted when all buses are ready for the vote. When the vote 
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is done, SHIFTAFMAJEN signal is asserted to get the voted code words into 

the received Golay word registers (GOLAY_MAJ_WORD_A. and GOLAY_MAJ_ 

WORD_B) and received message word registers. The received message word is 

shifted into the encoder module (ENCODEJN WMAT) by asserting the 

SHIFT_INTO_ENCS signal for 12 clock cycles. At the end of 12 clock cycles, the 

intermediate check bits will be ready to be XORed with received Golay check 

bits. Syndrome bits will be obtained by asserting the GEN_SYNDROME control 

signal as an enable for XORing mentioned above. The syndrome bits are used 

to find the data bits error pattern for correction. These pattern bits are XORed 

with the received message word to yield the corrected message word. The 

REG_CLR_ASYND signal is asserted high after the correction. 

SIGNAL NAME SIGNAL VALUE ASSERTED PERIOD (nsec.) 

MAJ_CLR 1 100-3400 

MAJ_VOTE_EN 1 3800^000 

BUS_A(1:49) 1EBC98234570A 3800-4000 

BUS_B(1:49) 1A234598BCDEA 3800-4000 

BUS_C(1:49) 189DCA3EF5870 3800^4000 

REGCLR_ASYND_XOR 100-200 

ENCODING_DONE 100-200 

SHIFTJNTO_ENCS 4400-6800 

SHIFTAFMAJ_EN 4000-4200 

CLR_SYNDROME 100-200 

GEN_SYNDROME 7400-7600 

Table 4.4. Simulation Input Values and Times When Different From Low Value. 
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The input values given to these three buses, and to the majority enable 

signal (MAJ_VOTE_EN) are shown in Figure B.4. 

As shown in Figure B.5, when the encode ROM is being written, all other 

signals stay low. The ROM values in this figure are the same as those encode 

ROM values used in the NEWTEST_YEN simulation. 

The output values are valid at time 7600ns as shown in Figure B.6. The 

24 syndrome bits generated are valid after asserting the GEN_SYNDROME 

signal high between 7400 and 7600ns. 

All bus values at time 7600ns are valid after the assertion of 

SHIFTAFMAJ_EN (shift enable after majority vote). The received message word 

stays on the VOTED_WORD bus until it is corrected by the data bit error 

correcting pattern bits. Bus values shown in Table 4.4 begin with ones. These 

ones are the first bits in these buses. The rest of the values are handled as HEX 

values. For example, for the BUS_A value 1EBC98234570A, the first 1 is not 

handled as HEX 1 (which is 0001 in 2's complement), but instead it is handled as 

a single bit(the first bit in 49 bit bus value). Another important point to be taken 

into consideration is the synchronization of the signals. When they have to go 

through the same components at the same time, some kind of buffering should 

be used to synchronize the signals to avoid invalid or unknown results. 

3.        RAM_BITS_NEW1 Simulation 

The RAM_BITS_NEW1 module shown in Figure A. 16 takes the syndrome 

bits to look up decode ROM matrix to yield data bits error pattern for correction 
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as shown in Figure 2.6. The difference between this module and the 

ENCODE_IN_WMAT module is that the RAM_BITS_NEW1 has a parallel input 

and serial output syndrome block. Besides, the RAM bits have the input values 

of the decode ROM matrix instead of the encode ROM matrix that is used 

previously in section I. The RAM_BITS_NEW1 stimulus force input values other 

than decode ROM matrix are given in Table 4.5. 

SIGNAL NAME 

SYND XIN 

SHIFT EN 

CLR FINXOR 

COUNT RESET 

SIGNAL VALUE ASSERTED PERIOD (nsec.) 

3600-3800 

4000-6600 

10O4200 

100^000 

Table 4.5. RAM_BITS_NEW1 Force Values. 

The syndrome input values are in a sequence of "1 1 0 1 1 0 1 1 1 1 0 1" 

as S1, S2, S3,..., S12 respectively. They are asserted in parallel between 3600 

and 3800 ns. The decode ROM values used to input into the RAM bits are given 

in Table 4.6. 
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CLOCK_PERIOD 

(nsec.) 

ENCODE_ROM_IN(11:0) 

(HEX.) 

A3 

(MSB) 

A2 A1 A0 

(LSB) 

200 000 0 0 0 0 

400 000 0 0 0 1 

600 F92 0 0 1 0 

800 7C9 0 0 1 1 

1000 C76 0 1 0 0 

1200 63B 0 1 0 1 

1400 C8F 0 1 1 0 

1600 8D5 0 1 1 1 

1800 B78 0 0 0 

2000 5BC 0 0 

2200 2DE 0 1 0 

2400 16F 0 1 1 

2600 F25 1 0 0 

2800 AE3 1 0 1 

3000 000 1 1 0 

3200 000 1 1 1 

Table 4.6. Input Value s of the Di »code ROI\ A. 

In Figure B.7, decode ROM input values, and the other signal values 

shown in Table 4.5 are traced. The input values of the decode matrix is taken 

from the PT matrix of the parity check matrix H shown in Figure 2.5. The rest of 
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the signals are handled in the same way as they are handled in NEWTEST_YEN 

simulation section. 

The RAM_BITS_NEW1 module generates the valid results at time 6800ns 

as shown in Figure B.8. The syndrome bits asserted to look up the decode ROM 

proves to be the same value (579 in HEX as shown in Figure B.8) as the hand 

calculated value. 

In simulations, some vital experience was gained. At very early 

simulations the force values for stimulus were entered bit by bit, and again and 

again at each new simulation session. These took a long setup time in 

simulations. Later in the simulations the hex values for "force files" are used. 

These force files were saved everytime when the new force values were 

entered. These were kept for upgrading after debugging of the current schematic 

designs. 

For the functional part of the simulation, the first thing to be considered is 

to get the implemented function work properly, and produce what is expected. 

Timing is not a major concern, except that you still can improve the speed by 

pipelining each stage to see how fast it can get. One of the biggest problems 

causing the invalid results was that the signals were being asserted 

asynchronously. This problem is eliminated by using the buffers at the signal 

paths. The signals coming earlier than the others will then be asserted at the 

same time. 
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The other difficulty faced in the simulations was in asserting the bus 

inputs. This problem is recovered by inputting the ROM matrices in a way shown 

in this chapter. They (the hex values in simulations of both encoder and 

decoder) are obtained by entering the ROM values given in Chapter II. Because 

of some of the ripper and bus naming conventions, the inputs had to be entered 

just the opposite way. That is the most significant bit value became the least 

significant bit value, and vice versa. In debugging the big modules that has a 

couple of modules inside, the simulation input times had to be reprogrammed for 

the synchronization purposes. 

The main purpose of these three simulations is to debug each module, 

and find out when to assert the control signals to the modules. This will help the 

design of the controller 
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V. XILINX FIELD PROGRAMMABLE GATE ARRAYS 

Beginning in 1980s, industry was introduced with a new technology to 

make ASIC designers more competitive. This shortens long acquired testing 

time, and fabrication-dependent wait period. Using FPGAs one can implement 

large digital circuits on a single chip. For Xilinx XC4000EX chips, they have up 

to 125 000 gates, and for XC4062XL it has up to 72K static RAM bits on a single 

chip [Xilinx, The Programmable Logic Data Book, 1996]. Along with laser 

programmable chip technology, FPGA technology is among those which grows 

at the fastest speed to offer industrial solutions to compete with VLSI 

technologies. The biggest disadvantage with FPGAs is the overall speed 

concern since the wiring and switching introduce resistive propagation delays as 

compared to transistor level design. But it is managed to get up to 66 Mhz 

overall speed in designs with Xilinx FPGAs. Now the FPGAs have more flip 

flops, and faster switching capabilities, and special clock distribution lines that 

can run through the whole chip. Faster speed designs are accomplished by 

pipelining, and by up to date solution database offered to the customers on the 

Internet. Field Programmable Gate Arrays provides the benefit of custom CMOS 

VLSI, while avoiding the initial cost, time delay, and inherent risk of a competitor 

technology, conventional masked gate array. Programmable logic devices 

provide the benefits of high integration levels without the risks or expenses of 
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semi-custom and custom IC development. Here are some of the benefits of 

programmable logic devices versus mask programmed gate arrays: 

A. Faster design and verification: FPGAs can be designed and verified 

quickly while the same process requires several weeks with gate 

arrays. There are no non-recurring engineering (NRE) costs, no test 

vectors to generate, and no delay while waiting for prototypes to be 

manufactured. [Xilinx, Programmable Data book, 1996] 

B. Design changes without penalty: Because the devices are software 

configured and user-programmed, modifications are much less risky 

and can be made anytime, in a matter of minutes or hours, as opposed 

to weeks it would take with gate arrays. This results in significant cost 

savings in design and production. 

C. Shortest time-to-market: When designing with programmable logic, 

time to market is measured in days or a few weeks, not months often 

required when using gate arrays. A study by a marketing research firm 

concluded that a six month delay in getting to market can cost a 

product one-third of its lifetime potential profit. With masked 

programmed gate arrays, design iterations can easily add that much 

additional time, and more to a product schedule [Xilinx, Programmable 

Logic Data Book, 1996]. FPGAs replaces most discrete and SSI 

devices, resulting in an 80% reduction in the number of components 
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and a 75% reduction in test time since it does not require test vectors. 

[Xilinx, programmable Logic Breakthrough '95,1995]. 

The result of experience gained with two successful FPGA family 

(XC2000 ,and XC3000) helped the XC4000, XC5000, and XC6000 families to 

provide a regular, flexible, programmable architecture of Configurable Logic 

Blocks (CLBs) [Xilinx, Technical Data, XC4000 LCA family, 1990]. They are 

interconnected by a powerful hierarchy of versatile and abundant routing 

recourses, and surrounded by a perimeter of programmable I/O blocks on the 

chip. 

The devices are customized by loading configuration data into the internal 

memory cells. The FPGAs can either actively read its configuration data out of 

external serial or byte-parallel PROM (master modes), or the configuration data 

can be written into the FPGA from a host (slave and peripheral modes). 

The Xilinx family is supported by powerful and sophisticated software, 

covering every aspect of the design: from schematic entry to simulation, to 

automatic block placement and routing of the interconnects, and finally the 

creation of the configuration bit stream. Since the FPGAs can be re-programmed 

for unlimited number of times, they can be used in innovative designs where 

hardware configuration is changed dynamically, or where hardware must be 

adopted to different user applications. FPGAs are ideal for shortening the design 

and  development cycle,  but they also offer a cost effective  solution  for 
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productive rates well beyond 1000 systems per month. [Xilinx, Tech. Data, 

XC4000 LCA family 

A.       XILINX LOGICAL CELL ARRAYS 

Xilinx high density user programmable gate arrays comprise three major 

configurable elements: configurable logic blocks (CLBs), input/output blocks 

(lOBs), and interconnections. The CLBs provide the functional elements for 

constructing the user's logic. The lOBs provide the interface between the 

package pins, and internal signal lines. The programmable interconnect 

resources provide routing paths to connect inputs and the outputs of the CLBs 

and lOBs onto the appropriate networks [Xilinx, Technical Data, XC4000 LCA 

Family, 1990]. 

Customized configuration is established by programming internal static 

memory cells that determine the logic functions and interconnections 

implemented in the LCA device. XC4000 family achieves high speed through 

advanced semiconductor technology (0.35 micron CMOS fabrication 

technology), chip density reaches up to 125 K logic gates with system 

performance of up to 66 MHz speed. It is also 100% Peripheral Component 

Interconnect (PCI) compliant supporting standard ASIC design flow. Three 

layers of metal is used in latest XC4000EXs, and extra feature of Select-RAM 

memory in XILINX chips dramatically improves the system performance, ease-of- 

use, and overall gate count. This feature allows easy distribution of high 

44 



performance customized single or dual port RAM functions. [Xilinx, Pro. Log. 

Data Book, 4-8, 1996] 

B.       XILINX FAMILY ARCHITECTURE 

1.       Configurable Logic Blocks 

A number of architectural improvements contribute to the Xilinx Family's 

increased logic density and performance levels. The most important one is a 

more powerful and flexible configurable logic block (CLB) surrounded by a 

versatile set of routing resources, resulting in more effective gates per CLB. 

Each CLB packs a pair of flip-flops, and two independent 4-input function 

generators. The two function generators offer designers plenty of flexibility, 

because most of the combinatorial logic functions need less than four inputs. 

Consequently, the design software tools can deal with each function generator 

independently, improving the cell usage [ Xilinx, XC4000 LCA family, 1990]. 

Thirteen CLB inputs, and four CLB outputs provide access to function 

generators and flip-flops. Four inputs are available to each of the two function 

generators (F1-F4 and G1-G4). These function generators, whose outputs are 

labeled F' and G', are each capable of implementing any arbitrarily defined 

Boolean function of their four inputs. The function generators are implemented 

as memory look up tables, therefore the propagation delay is independent of the 

function being implemented. A third function generator, labeled H', can 

implement any Boolean function of its three inputs; F' ,G' and a third input from 

outside the block (H1). Signals from the function generators can exit CLB on two 
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outputs; F' or H' can be connected to the F output, and G' or H' can be 

connected to the G output, Thus, a CLB can be used to implement any two 

independent functions up to four variables or one single function of five variables 

or any function of four variables together with some functions of five variables, or 

it can implement even some functions of up to nine variables (Figure 5.1). 

Implementing wide functions in a single block reduces both the number of 

required blocks and the delay in the signal path, achieving both increased 

density and speed [Xilinx XC 4000 LCA family technical data book, 1990]. 
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Figure 5.1. CLB Function Generators Has the Ability To Be Used As 
Read/Write Memory Cells. 
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The two storage elements in the CLB are edge triggered D-type flip-flops 

with common clock (K) and clock enable (EC) inputs. A third common input (S/R) 

can be programmed as either asynchronous set or reset signal independently for 

each of the two registers; this input can be disabled for either flip-flop. 

A separate global SET/RESET line (not shown in Figure 5.2) sets or clears each 

register during power up, reconfiguration, or when a dedicated RESET net is 

driven active. This RESET input does not compete with other routing recourses; 

it can be connected to any package pin, providing a global reset input. Each flip- 

flop can be triggered on either rising or falling edge of the clock. The source of a 

flip-flop data input is programmable: it is driven either by functions F', G' and H\ 

or Direct In (DIN) block input. The flip-flops drive the Q1 and Q2 of the CLB 

outputs. In addition, each CLB F' and G' function generator contains dedicated 

arithmetic logic for the fast generation of the carry and borrow signals, greatly 

increasing the efficiency and performance of adders, subtracters, accumulators, 

comparators, and even counters. Multiplexers in the CLB map the four control 

inputs, labeled C1 through C4 in Figure 5.2, into the four internal control signals 

(H1, DIN, S/R, AND EC) in any arbitrary manner [Xilinx, XC4000 LCA 

Family, 1994]. 

Delays in LCA-based designs are layout dependent. While this makes it 

hard to predict a worst case guaranteed performance, there is a rule designers 

should consider; the system clock rate should not exceed one third to one half of 

the specified toggle rate. Critical portions of a design, shift registers and simple 
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counters, can run faster approximately two-thirds of the specified toggle rate 

[Xilinx, Tech. Data XC4000 LCA family]. 
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Figure 5.2. Simplified Diagram of XC4000 Configurable Logic Block. 

The CLB can pass the combinatorial outputs to the interconnect networks, 

but can also store the combinatorial result(s) or other incoming data in one or 

two flip-flops, and connect their outputs to the interconnect network as well. The 

older programmable gate arrays had to make a choice, either output the 

combinatorial function or the stored value. From the XC4000 FPGAs on, the flip- 
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flops can be used as registers or shift registers without blocking the function 

generators from performing a different, perhaps unrelated job. This increases the 

functional density of the chip [Xilinx, Tech. Data, XC4000 LCA Family, 1990]. 

When a function generator drives a flip-flop in a CLB, the combinatorial 

propagation delay overlaps completely with the set-up time of the flip-flop. The 

set-up time is specified between the function generator inputs and the clock 

input. This represents a performance advantage over competing technologies 

where combinatorial delays must be added to the flip-flop set-up time. Each CLB 

includes high speed carry logic that can be activated by configuration. Each 4- 

input function generator can be configured as a two bit adder with built in hidden 

carry that can be expanded to any length. This dedicated adder circuitry is so 

fast and efficient that conventional speed up methods like carry 

generate/propagate are meaningless, even at the 16-bit level, and of marginal 

benefit at the 32-bit level. The fast carry logic opens the door to many new 

applications involving arithmetic operation, where the previous generations of 

FPGAs were not fast and/or not efficient enough. High speed address offset 

calculations in microprocessor or graphic systems, and high speed addition in 

digital signal processing are two typical applications. As the technology 

develops, the carry logic helps faster and more efficient counters. In addition, 

the abundance of flip-flops in the CLBs invites pipelined designs. This is a 

powerful way of increasing performance by breaking the function into smaller 

subfunctions, and executing them in parallel, passing on the results through the 
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pipeline. This method should be seriously considered wherever total 

performance is more important tnan simple throughput-delay [Xilinx, Tech. Data 

XC4000, LCA family, 1990]. 

For years, FPGAs have suffered from the lack of fast and wide decoding 

circuitry. When the address or the data field is wider than the function generator 

inputs, FPGAs need level decoding and thus are slower than PALs. In XC3000 

there are five bits, in XC4000 family CLBs, there are nine inputs; and any 

decoder up to 9 inputs is, therefore compact and fast. But there is also a need 

for larger decoders, especially for address decoding in large microprocessor 

systems. The XC4000 family has 16 very fast programmable decoders, each 

with up to 40 inputs. These dedicated decoders are located at chip periphery, 

four decoders on each chip edge. They accept I/O signals and internal signals 

as input and generate a decoded output in 10 ns. Each decoder AND gate can 

also be split into two when a larger number of narrower decoders is required. 

Very large PALs can be emulated by ORing the decoder outputs in a CLB. This 

fast decoding feature covers what has been long considered a weakness of 

FPGAs. Users often resorted to external PALs for simple, but fast decoding 

functions. The maximum output current specification of today's FPGAs often 

forces the user to add external buffers, cumbersome especially on bi-directional 

I/O lines. [Xilinx, Tech. Data XC4000 LCA Family]. 
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2. Abundant Routing Resources 

Connections between blocks are made by metal lines with programmable 

switching points and switching matrices. The globally distributed signal lines 

have access to any clock or logic input. The designer of synchronous systems 

can distribute several clocks, and control signals, all over the chip, without 

having to worry about any clock skew. The horizontal long lines can be used as 

unidirectional or bi-directional data buses, or they can implement wide 

multiplexers or wired AND functions. Single-length lines connect the switching 

matrices that are located at every intersection of a row and a column of CLB. 

These lines provide the greatest interconnect flexibility, but cause a delay 

whenever they go through a switching matrix. Double-length lines provide faster 

signal routing over intermediate distances [Xilinx, Tech Data XC4000 LCA 

Family, 1996]. 

3. On-Chip Memory 

Beginning from XC4000 family LCAs, They have on-chip static memory 

resources (RAM bits up to 73728 bits for XC4062XL)[Xilinx, The Prog. Logic 

Data Book, 1996], further increasing the system integration level. And optional 

mode for each CLB makes the memory look up tables in the F' and G' function 

generators usable as either 16*2 or 32*1 bit array of read/write memory cells. 

The F1-F4 and G1-G4 inputs to the function generators act as address lines, 

selecting a particular memory cell in each look up table. The functionality of the 

CLB control signals changes in this configuration; H1, DIN, and S/R lines 
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become the two data inputs and the Write Enable (WE) input for 16*2 memory. 

When the 32*1 configuration is selected, D1 acts as the fifth address bit, and DO 

as the data input. The content of the memory cell(s) being addressed are 

available at the F' and G' function generator outputs, and can exit the CLB 

through its F and G outputs. Configuring the CLB function generators as 

read/write memory does not affect the functionality of the other portions of the 

CLB, with the exception of the redefinition of the control signals. The H' function 

generator can be used to implement Boolean functions of F' ,G' and D1, and D2 

flip-flops can latch the F, G', H', or DO signals. The RAM bits are very fast: read 

access time is the same as logic delay (for XC4000 about 5 ns) and write time is 

10 ns (again for the same FPGA), both are several times faster than any off-chip 

solution. Such distributed RAM is a novel concept, creating new possibilities in 

system design; registered arrays of multiple accumulators, status registers, 

index registers, DMA counters, distributed shift registers, LIFO stacks, and FIFO 

buffers. The other important benefit of on board RAM bits is to save gates (such 

as flip-flops, address line decoders, and etc.) which designer can use to 

implement more other functions [Xilinx, Tech. Data XC4000 LCA family, 1990]. 

4.        Input/Output Blocks 

User-configurable I/O blocks (lOBs) provide the interface between 

external package pins and the internal logic (shown in Figure 5.3). Each IOB 

controls one package pin and can be defined for input, output, or bi-directional 

signals. In Figure 5.3, two paths labeled H and I2 .bring input signals into the 
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array. Inputs are routed to an input register that can be programmed as either an 

edge triggered flip-flop or a level sensitive transparent latch. The data input to 

the register can be delayed to compensate for the delay of the clock. Output 

signals can pass directly to the pad, or to be stored in an edge triggered flip-flop. 

OE signal can be used to change output buffer's state to high impedance to 

implement 3-state buffers or bi-directional I/O. Slew rate control signal is used to 

minimize power bus transients when switching non-critical signals. The output 

buffers are capable of sinking 12mA; two adjacent buffers can be wired-ANDed 
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Figure 5.3 Block Diagram of XC 4000 Input/Output Block. 
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externally to sink up to 24mA in order not to use buffers outside the package, in 

this case it can support short buses on any card (like PC board). Programmable 

pull-up and pull-down resistors are useful to connect unused pins to Vcc or 

ground to minimize the power consumption. And it is compatible with IEEE 

standard 1149.1 for boundary scan testing, permitting easy chip and board level 

testing of LCA-based applications[Xilinx, Tech. Data XC4000 LCA Family, 1990]. 

5.       Programmable Interconnect 

All internal connections are composed of metal segments with 

programmable switching points to implement the desired routing. An abundance 

of different routing resources is provided to achieve efficient automated routing. 

The number of routing channels is scaled to the size of the array, i.e, it 

increases with array size. CLB inputs and outputs are distributed on four sides of 

the block (beginning from XC4000 FPGAs), providing routing flexibility. There 

are three main types of interconnect, distinguished by the relative length of their 

segments: single-length lines, double-length lines, and long lines. The number of 

routing channels varies with the array size. The routing scheme was designed 

for minimum resistance and capacitance of the average routing path, resulting in 

significant performance improvements. The single-length lines are a grid of 

horizontal and vertical lines that intersect at a switch matrix between each block. 

Each switch matrix consists of programmable n-channel pass transistors used to 

establish connections between the single length lines. And it can be routed one 

way or multiple ways depending on the branches required. Single length lines 
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are used to conduct signals within a localized area and to provide branching for 

nets fanout greater than one [Xilinx, Tech. Data XC4000 LCA Family]. 

Double-length lines provide the most efficient implementation of 

intermediate length, point to point interconnections. Long lines form a grid of 

metal interconnect segments that run the entire length or width of the array. 

Additional long lines in the vertical plane can be driven by special global buffers, 

designed to distribute clocks and other high fanout control signals throughout 

the array with minimal skew. Long lines are intended for high fanout time, critical 

signal nets. Communication between long lines and single-length lines is 

controlled by programmable interconnect points at the line intersection by six 

pass transistors to route signal to where it is needed [Xilinx, Tech Data XC4000 

LCA family, 1990]. Double length lines do not connect with other lines, and 

beginning with the XC4000EX quad lines, introduce higher communication or 

faster propagation capabilities. 

6.       Taking Advantage of Reconfiguration 

All Xilinx families of LCAs can be reconfigured to change logic functions 

while resident in the system. This gives the system designer a new degree of 

freedom that is not available with any other type of logic. Hardware configuration 

can be changed as easily as software. Design updates and modifications are 

easy. An LCA device can be reconfigured dynamically to perform different 

functions at different times. Reconfigurable logic can be used to implement 

system self diagnostics,  create system capable of being  reconfigured for 
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different environments or operations, implement dual-purpose hardware for a 

given application. As an added benefit, use of reconfigurable LCAs simplifies 

hardware design and debugging and shortens a product's time-to-market [Xilinx, 

Tech. Data XC4000 LCA Family, 1996]. 

7.       The Xilinx Development System 

The powerful hardware features of FPGA family require a powerful, easy 

to use development tool, and Xilinx provides an enhanced tool: Xilinx Automated 

CAE Tool (XACT). And XACT Design Manager (XDM) simplifies the selection of 

command line options with pull-down menus and online documents. Design 

sheet can be entered using schematic capture software or industry standard 

interfaces such as EDIF. The XACT development system has interfaces with a 

number of powerful design environments, and it supports more than 100 

packages (like Mentor Graphics, ORCAD, FutureNet, VIEWLogic, Cadence, 

Synopsys, etc.). 

C.       CONCLUSION 

In this thesis study, the XC4003 FPGA environment is used for the 

simulations of the individual modules. It is concluded that, the XC4003 gate 

count is not sufficient for the MAIN_CIRCUIT design even before adding the 

controller. The XC4007 or a higher XC4000 family member should be chosen to 

satisfy the needs. 

As a result FPGAs are used with high performance along with price 

leadership   for   high   volume   applications   like   Plug-and-play   cards,   ATM 
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(Asynchronous Transfer Mode) cards, for wireless communication, CDROMs, 

SATCOMs, Teleconferencing and DSP applications successfully. 
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VI.   CONCLUSION AND RECOMMENDATIONS 

In this thesis study, the golay encoder/decoder is implemented in the 

Mentor Graphics schematic entry tool Design Architect. The simulations for 

some individual modules are done in Quicksimll for Xilinx XC4003 FPGA 

environment. The controller part of the design is to be implemented in a later 

study according to the simulation results obtained in this study (as explained in 

Chapter IV). After the design is completed, the migration of the coder into an 

FPGA chip is to be done. It is necessary to do timing simulations of the coder 

for the FPGA demo board. The FPGA that will be used to simulate the coder 

should be a XC4007 or higher gate capacity chip depending on the 

implementation of the controller. 

During the real environment execution on the demo board, the encode 

and decode ROM inputs need to be done only once at the beginning. The static 

RAM bits can keep the ROM values entered. Therefore, the input/output pads 

can be assigned to other I/O signals. The static RAM bits of the XILINX 

architecture provided faster encoding, and decoding capability, but it took time 

to understand how to include it in the design process. 

For a faster schematic design of the coder, flip flops can be used at 

several stages by dividing the modules into equal design partitions for 

pipelining. In the XC4000 family there are a number of options that can offer 
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enough gate counts for designs requiring large number of gates for high speed 

pipeline operation. 

Modular design approach helped a lot in the implementation and the 

debugging of the modules and layers of the design hierarchy. Moreover it 

helped the understanding of the function partitions and interfaces. 

For future implementation of the controller, the first approach is to define 

the partitions of states independent of each other. After debugging each state 

transition diagram of the partitions, they all can be put together to perform the 

overall state transition diagram. By using this state table and an algorithm (such 

as one-hot) the controller can be implemented. The second approach is to use 

a synthesis tool (like VHDL or Verilog in one of the EDA tools) by writing the 

states of the controller required in the design in high level languages. After 

converting it into schematic sheet, it can be imported into the FPGA chips. 

Before designing the controller and exporting the design into an FPGA 

chip, it is important to study the State Machine Design Chapter in the Digital 

Design Book [John F. Wakerly,1994], Xilinx XC4000 FPGA training course 

manuals, and the XILINX "User Guide and Tutorials" book to save time before 

facing the potential problems. 

The lack of experience with the schematic capture and simulation tools is 

part of the difficulty in this work. Customer services of the design programming 

environment and direct support people were often not available. This problem 

resulted in slow down during the thesis study. 
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APPENDIX A. 

CIRCUIT SCHEMATICS 
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Figure A.6.RAM_X0R_T0_LAST1, Looked up Encode ROM Rows XOR Module 
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Figure A.7. 12FDC_WES, 12 D-Flip-Flop with Enable. 
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Figure A.8. REGFIRST_WEN1, First Column 49 Bit Register Module. 
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Figure A.9. REG_VEWSEC0ND1, Second and Third Column Register Module. 
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Figure A. 12.G0LAY_MAJ_W0RD_B, Received Golay Word Register. 
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Figure A.13. MAJ_WORD_B_TO_ENC, Received Message Word Register. 
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Figure A. 14. REG_FORMAJ_WORD, Register for Majority Word. 
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Figure A. 15. XOR2S_NEW3, Syndrome Bit Generator XOR Module. 
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Figure A. 17. SYND_LAST_CIR, Syndrome Bits Shift Module. 
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Figure A. 18. 24BIT_PAR_TO_SER, 24 Bit Massage Words Shift Module. 
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0 .0 *1 *0r *Xr «XXXXXXXXXXXXXr 
0 .1 1 Or Xr XXXXXXXXXXXXXr 
0 .2 1 Or Xr XXXXXXXXXXXXXr 

100 .0 *0 *1 *0 *0000000000000 
200 0 *1 *0 0 0000000000000 
300 0 *0 0 0 0000000000000 
400 0 *1 0 0 0000000000000 
500 0 *0 0 0 0000000000000 
600 0 *1 0 0 0000000000000 
700 0 *0 0 0 0000000000000 
800 0 *1 0 0 0000000000000 
900 0 *0 0 0 0000000000000 

1000 0 *1 0 0 0000000000000 
1100 0 *0 0 0 0000000000000 
1200 0 *1 0 0 0000000000000 
1300 0 *0 0 0 0000000000000 
1400 0 *1 0 0 0000000000000 
1500 0 *0 0 0 0000000000000 
1600 0 *1 0 0 0000000000000 
1700 0 *0 0 0 0000000000000 
1800 0 *1 0 0 0000000000000 
1900 0 *0 0 0 0000000000000 
2000 0 *1 0 0 0000000000000 
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3800 0 *1 0 *1 *1EBC98234570A 
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3900 0 *0 0 1 1EBC98234570A 
4000 0 *] 0 *0 *0000000000000 
4100 0 *0 0 0 ooooooooooooc 
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4200 1 1 0 0 ooooooooooooc 
4300 0 *0 0 0 ooooooooooooc 
4400 0 *1 0 0 ooooooooooooc 
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Figure B.4. DECODE_STAGE_LAST2 Simulation Inputs List. 
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Figure B.5. DEC0DE_STAGE_LAST2 Encode ROM Trace. 
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Figure B.6. DECODE_STAGE_LAST2 Syndrome Bits Trace. 
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